

TLDR

Targeting the Inhibitors of Apoptosis Proteins (IAPs) to Combat Drug Resistance in Cancers

Frontiers in Pharmacology

Qingmei Ye, Xiao-Zhao Zhuang, Juan Li and Xin Zhou

Contributors:

Bryan Zhang - Writer & Editor

The Big Idea:

Around 90% of cancer-related deaths are a result from drug resistance, often due to cancer cells evading programmed cell death through Inhibitor of Apoptosis Proteins (IAPs); thus, targeting IAPs is emerging as a promising strategy to overcome resistance and restore natural cell death.

Key terms and concepts:

Inhibitor of Apoptosis Proteins (IAP):

A family of proteins found in your cells that help regulate when and how cells die. Their job is to keep a healthy balance between cell survival and cell death.

Apoptosis:

A natural process where a cell undergoes programmed cell death (kind of like a suicidal mechanism) when it is no longer needed or becomes damaged to keep you healthy.

Drug resistance:

When cancer cells don't respond to a drug that is usually able to weaken/kill them.

Caspases:

A family of enzymes within your cells that help trigger and carry out apoptosis.

SMAC:

A protein found in mitochondria that is released into the cell's cytosol to antagonize/block IAPs. Allowing caspases to execute cell death.

Pro-Apoptotic Mitochondrial Proteins:

"Death-promoting" proteins that live in the mitochondria and help destroy unhealthy cells when needed.

Apoptogenic factors:

Molecules/stimuli that tell a cell it is time to die (apoptosis).

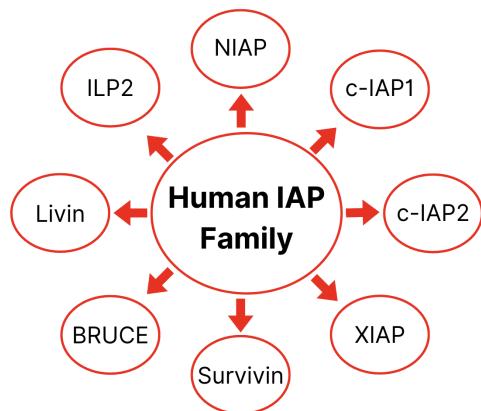
Ubiquitination:

The process of attaching a small protein called ubiquitin to an unwanted protein so the cell knows it should be broken down.

Small molecule inhibitors:

An umbrella term to define drug compounds that are designed to block the activity of specific proteins (like IAPs in this review) to stop harmful cell processes.

Proteolysis Targeting Chimeras (PROTACs):


Artificial molecules designed to break down specific proteins.

Biomarkers:

Measurable signs in the body used to guide diagnosis or treatment.

Key findings:

- Overexpressed IAPs allow cancers to avoid apoptosis and develop drug resistance.
- There are eight members in the human IAP family.

- Each member (except for NAIP and ILP2) is associated with causing drug resistance in particular treatment methods for specific cancers.
- Scientists don't completely understand how all eight of these proteins behave in cancer, but they do have a decent understanding of the following:

IAP	Notes
X-Linked IAP (XIAP)	<ul style="list-style-type: none"> • Attaches to and stops caspases -3, -7, and -9 (specific types of caspase enzymes), which are key players in starting and continuing programmed cell death. • Interferes with cell death by delaying the release of important molecules (cytochrome-c, Apaf-1, SMAC) from the mitochondria • Work with other molecules to further control cell death.

Cellular IAP 1/2 (c-IAP1/2)	<ul style="list-style-type: none"> Controls key signalling pathways that turn on NF-κB, a protein that activates survival genes. Stops death-triggering complexes (called complex IIb) which would usually lead to apoptosis.
Survivin	<ul style="list-style-type: none"> Stops caspase-9 from initiating the cascade of apoptosis Prevents SMAC from entering the cytosol from the mitochondria on a cellular level. Without SMAC in the cytosol, the IAPs keep working, and apoptosis is stopped.
Baculovirus IAP Repeat containing ubiquitin-conjugating enzyme (BRUCE)	<ul style="list-style-type: none"> Binds to and prevents pro-apoptotic mitochondrial proteins (SMAC/DIABLO and HtrA2/Omi) from neutralizing XIAP, the IAP that suppresses caspases Keeps the mitochondria intact, preventing the release of apoptogenic factors. Tags cell-death proteins like caspase-9 for destruction in ubiquitination, helping cells avoid apoptosis and survive longer Interferes with the way cells respond to extracellular signals to trigger apoptosis, helping the cell survive when it normally wouldn't

- Simply, the way IAPs contribute to drug resistance can be simply expressed through the following figure:

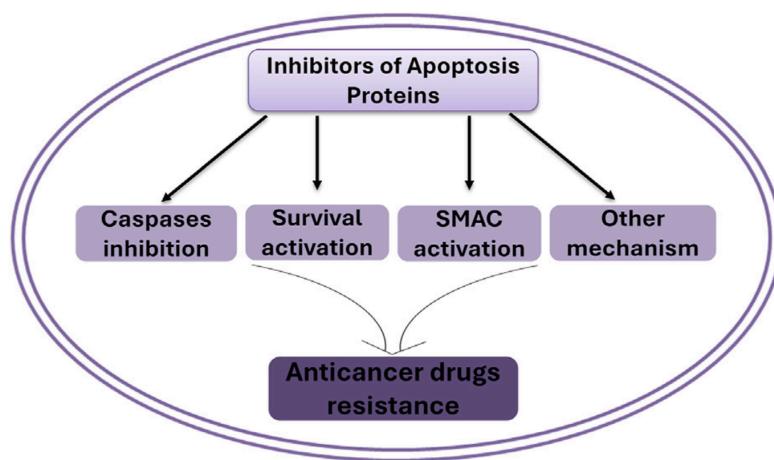


FIGURE 1
IAPs induces drug resistance via multiple mechanisms.

- Small molecule inhibitors are used as a strategy target and bind to IAPS, and in slightly different ways with the help of other cancer therapies, induce apoptosis.
- Targeting IAP's is a feasible approach towards overcoming drug resistance in cancers; drastically improving patient clinical outcomes.

Future Directions:

- **Development in highly-specific medicines** that precisely target IAPS. A novel approach involves leveraging PROTACs to degrade IAPs, rather than blocking them like traditional inhibitors.
- Exploration of more effective combinations between IAP-targeted treatments with other cancer therapies. Potentially, **reforming the healthcare system** by individualising patient to patient treatment strategies.
- Identification of biomarkers to help **predict how patients will respond** to IAP-targeted treatments by looking for signs of IAP activity within tumors.
- **More clinical trials** to test for safety, effectiveness, ideal dosages, and long-term effects of IAP-targeted treatments before they can be widely used.

References:

Ye, Q., Zhuang, X.-Z., Li, J., & Zhou, X. (2025). Targeting the inhibitors of apoptosis proteins (IAPs) to combat drug resistance in cancers. *Frontiers in Pharmacology*, 16. <https://doi.org/10.3389/fphar.2025.1562167>

Ye, Q., Zhuang, X.-Z., Li, J., & Zhou, X. (2025a). *Figure 1. IAPs induces drug resistance via multiple mechanisms*. Targeting the Inhibitors of Apoptosis Proteins (IAPs) to Combat Drug Resistance in Cancers. *Frontiers in Pharmacology*. Retrieved April 22, 2025, from <https://doi.org/10.3389/fphar.2025.1562167>.